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The ICON Model

• ICOsahedral Non-hydrostatic model

• Multi-resolution grid (not supported here)

• Triangular cells

• Conservation laws

• ‘Bandwidth limited’

• Extensive use of indexing arrays

• Developers: MPI-M, DWD



ICON-GPU Project

• CSCS/C2SM offered its assistance with GPUs

• Goal: compare GPU paradigms in terms of efficiency, usability and 
developer friendliness

• Non-hydrostatic solver (~5K l.o.c.), and physical parameterizations

• Paradigms chosen: OpenCL, CUDAFortran for dynamics, 
accelerator directives (PGI/Cray) for physics 

• OpenCL NH solver: 6 weeks, by PhD student (Conti)

• CUDAFortran NH solver: ~8 weeks (Sawyer)

• Lapillonne: microphysics, radiation, turbulence with directives
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Porting NH solver to GPUs

Fortran

OpenCL CUDAFortran



CUDAFortran Example

kernel invocation

kernel content



 OpenCL/CUDAFortran  Approaches

• Minimal refactoring

• Extensive use of local 
(shared) memory

• Iteration space: 1D or 2D

• Blocking factor: nproma=1 
optimal

• Simpler but more kernels, 
fewer IFs in kernels

• Refactored to remove 
intermediate arrays

• More use of registers

• 1-D grid of thread blocks, 
each with 2D distribution

• nproma=8/16 optimal

• Fewer kernels, more IFs

OpenCL PGI CUDAFortran



Implicit Vertical Solver

• Implicit solver requires a tridiagonal solution for each vertical column

• All 2-D arrays except one (z_q) can be replaced with registers;  
CUDAFortran version makes use of this



CPUs vs. GPUs

Magny-Cours - 1T

Magny-Cours - 12T

Magny-Cours - 24T

SGI UV1000 (Westmere) 1T

SGI UV1000 (Westmere) 7T

SGI UV1000 (Westmere) 15T

Tesla S1070 (OpenCL)

Tesla S1070 (CUDAFortran)

GeForce GTX285 (OpenCL)

GeForce GTX285 (CUDAFortran)

Fermi M2050 (OpenCL)

Fermi M2050 (CUDAFortran)

AMD Cayman (OpenCL)
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CUDAFortran Time Distribution
 calls  t_min       t_average   t_max       t_total
 ------------------------------------------------------------------------------
 total                  1     57.547s     57.547s     57.547s     57.547s    57.547
 solve_nh            1000     .05614s     .05679s     .06111s     56.790s    56.790
 nh_driver             10      5.722s      5.755s      5.886s     57.547s    57.547
 intp                   1     .01501s     .01501s     .01501s     .01501s     0.015
 vel tendencies      2000     .00797s     .00987s     .01238s     19.733s    19.733
 cells to edges      2000     .00000s     .00044s     .00100s     .87150s     0.872
 exner value         2000     .00007s     .00072s     .00193s      1.444s     1.444
 rho and ddz_exner   2000     .00077s     .00101s     .00147s      2.011s     2.011
 horizontal calcs    2000     .00104s     .00187s     .00296s      3.742s     3.742
 rbf vt calc         2000     .00083s     .00090s     .00105s      1.798s     1.798
 vn avg              2000     .00106s     .00107s     .00120s      2.149s     2.149
 vn vt covariant ma  2000     .00374s     .00382s     .00455s      7.643s     7.643
 div-related         2000     .00067s     .00069s     .00086s      1.379s     1.379
 vertical calcs      2000     .00367s     .00375s     .00422s      7.500s     7.500
 tridiagonal solver  2000     .00043s     .00044s     .00059s     .88492s     0.885
 post calcs          2000     .00312s     .00345s     .00409s      6.901s     6.901
 device copies          1     .17517s     .17517s     .17517s     .17517s     0.175
 ------------------------------------------------------------------------------

• More optimizations possible!

• “vel tendencies” consists of 13 kernels, “vertical calcs” 5 kernels, “vn 
vt covariant”also 5, but still they seem to contain bottlenecks

• Device copies and tridiagonal solver appear not to be a problem



Aggregated NH Performance (DP)

• Fermi M2050 (CUDAFortran):

• R2B3: 18.8 GFLOP/s 

• R2B4: 33.0 GFLOP/s 

• Cayman (OpenCL):

• R2B4: 21.2 GFLOP/s 



Physics Parameterizations

• To be shared between ICON and COSMO (European regional model)

• Currently ported to GPUs:

• PGI : microphysics (hydci_pp), radiation (fesft), turbulence (only 
turbdiff yet)

• OMP – acc (Cray) : microphysics, radiation

• GPU optimization: loop reordering, replacement of arrays with scalars

• Note: hydci_pp, fesft and turbdiff subroutines represents respectively 
6.7%, 8% and 7.3% of the total execution time of a typical cosmo-2 
run.



Physics Performance

• Peak performance of Fermi card for double precision is 515 GFlop/s, i.e.,5%, 4.5% and 
2.5% of peak performance for the microphysics, radiation and turbulence schemes, 
respectively

• Parallel CPU code run on 12 cores AMD magny-cours CPU – however there are no mpi-
communications in these standalone test codes.

• Note the peak performance of Fermi card is 5 times that of the magny cours processor. 
Overhead of data transfer for microphysics and turbulence is very large.



Lessons learned

• Never underestimate the potential of a smart, motivated 
graduate student!

• CUDA/OpenCL programming not that difficult, but highly error-
prone; debugging options limited

• CUDAFortran is much more ‘appealing’ to developers, but 
OpenCL is a portable paradigm

• Optimizations to both versions still possible

• Future: use domain-specific language to describe solver; library to 
implement kernel operations

• Physics: we must learn how to combine directive-based Fortran 
codes with CUDA/C++ codes (e.g., COSMO dycore)



Thank you for your attention!
wsawyer@cscs.ch
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Physical Parameterizations

• 2D data fields inside the physics packages with 
one horizontal and one vertical dimensions: f
(nproma,ke), with nproma = ie x je / nblock.

• 2D data fields inside the physics packages with 
one horizontal and one vertical dimensions: f
(nproma,ke), with nproma = ie x je / nblock.

• Goals:

• Parameterizations to be shared with 
COSMO (regional) model

• Blocking strategy:  all physics 
parametrization could be computed while 
data remains in the cache

call init_radiation
call init_turbulence 

…
do ib=1,nblock
 call copy_to block
 call organize_radiation
 …
 call 

organize_turbulence
 call copy_back
end do



(c) CSE Lab 2010 - DIEGO ROSSINELLI, CHRISTIAN 
CONTI
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4x Quad-Core AMD Opteron 8380 @ 2.5GHz - 1 Thread - C++

THE ROOFLINE MODEL

OPERATIONAL INTENSITY R = FLOPS/MEMORY TRAFFIC (BYTES)

PERFORMANCE MODEL FOR BOTH GPU AND CPU

S. Williams, A. Waterman, D. Patterson, "Roofline: An Insightful Visual Performance Model for Floating-Point Programs and Multicore Architectures", 
Communications of the ACM (CACM), April 2009. 
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“HOW GOOD IS MY CODE?”

f = r · bmax

f = fmax

Green Computing:
- computationally bound: reduce bus clock/s
- memory bound: reduce processor clock/s



GPU Bandwidths
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